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Abstract. The approach to the dynamics of a charged particle in the Born–Infeld nonlinear
electrodynamics developed in Chruściński (1998Phys. Lett.A 2408) is generalized to include
Born–Infeld dyons. Both Hamiltonian and Lagrangian are constructed. Some similarities with the
BPS mass formula and topological field theory are discussed.

1. Introduction

Recently, Born–Infeld nonlinear electrodynamics [2] has found a deep application in string
theory andp-brane physics (see e.g. recent papers [3] for a review and references). However,
in this letter we consider not branes butordinary point particles coupled to the Born–Infeld
field (this was actually the original motivation of Born and Infeld [2]).

In [1] it was shown how to consistently describe the classical dynamics of electrically
charged particles. Of course this problem is trivial when one considerstestparticles. Then
one simply takes a standard interaction Lagrangian ‘jµAµ’ and the Lorentz equations of motion
obviously follow. However, the description oftrue particles leads (as in the Maxwell theory)
to basic difficulties. Due to the nonlinearity it is impossible to derive separate equations of
motion for a particle corresponding, for example, to the celebrated Lorentz–Dirac equation in
the Maxwell theory. The main result of [1] consists of the observation that information about a
particle’s dynamics is entirely encoded into some boundary condition for field variables which
has to be satisfied along a particle’s trajectory (in [1] it was called thedynamical condition).

Now, since the Born–Infeld theory is duality invariant [4,5] it should be possible to describe
the dynamics of dyons in the same way. Note however, that the presence of a magnetic charge
breaks the very basic property of the model. Namely, the field tensorFµν (which enters into
the Lorentz equation) is no longer bounded in the vicinity of a particle. Nevertheless, as we
shall show in this letter, the dyon’s dynamics is well defined. We do so not only for an aesthetic
purpose. It turns out that the Dirac idea of magnetically charged particles [6] (see also [7] for
a review) has recently led to very remarkable results in field and string theories (see e.g. [8]).

Moreover, we present a canonical formalism for our theory. Both Hamiltonian and
Lagrangian structures are constructed. The canonical structure of the Born–Infeld theory
without a charged matter was already analysed by Born and Infeld [11] (see also [12]). In the
presence of dyons, treated as test particles, it was discussed in [13]. The canonical structure of
the theory based on the dynamical condition [1] was constructed in [9] and it is easy to show
that it may be generalized to a dyon. However, in this letter we present a new structure which
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is much simpler that the one developed in [9] and, moreover, may be easily generalized to a
many-particle case.

This new structure has a very interesting feature. Obviously, for atruedyon, the interaction
is no longer based on ‘jµAµ’. Actually, we show that there is no interaction term at all! The
interaction is fully encoded into boundary conditions for the Born–Infeld field on a boundary
of a punctured (dyon’s position is removed) Cauchy surface. Therefore, it formally looks like
a topological interaction.

It should be stressed that usually one discusses classical dyons in a different context,
namely as static solutions to the (in general, non-Abelian [10]) Born–Infeld theory coupled to
a Higgs field. The corresponding BPS limit [14] for such models was studied in [15]. The
point-like dyon considered in this letter is simply postulated. However, there is a striking
similarity between the BPS mass formula for dyons in the non-Abelian theories and a Newton-
like equation (18) of this letter. We shall comment on it in the last section.

2. Dynamical condition

The Born–Infeld nonlinear electrodynamics [2] is based on the following Lagrangian (see [1]
for all details of notation):

LBI := √−det(bηµν)−
√−det(bηµν + Fµν) = b2

(
1−

√
1− 2b−2S − b−4P 2

)
(1)

whereηµν denotes the Minkowski metric with the signature(−,+,+,+) and the standard
Lorentz invariantsS andP are defined by:S = − 1

4FµνF
µν andP = − 1

4Fµν∗Fµν (∗Fµν
denotes the dual tensor). Adding to (1) the standard electromagnetic interaction term ‘jµAµ’
one recovers standard electromagnetic field equations:

∂µ∗Fµν = 0 ∂µG
µν = −jν (2)

with Gµν := −2∂LBI /∂Fµν .
Now, let us assume that the external electric currentjµ in (2) is produced by a point-like

electrically charged particle moving along the time-like trajectoryζ . Analysing the asymptotic
behaviour of the fields in the vicinity of a charged particle it was shown [1] that in its rest frame
the most singular part ofD field behaves as

D(−2) = eA
4π

r

r
(3)

where, due to the Gauss law, the monopole part of ther-independent functionA equals 1. We
use a convenient notation:D = r−2D(−2) + r−1D(−1) +D(0) + · · ·, with r-independentD(k).
Moreover,

H ∼ r−1 E ∼ r0 B ∼ r (4)

with

E(0) = be

|e|
r

r
. (5)

Using these results it has been shown [1] that any regular solution of Born–Infeld field
equations (2) with point-like external current satisfies:

ET
(1) =

be

4|e| (3a− r
−2(ar)r) (6)

whereET stands for the transversal part ofE anda denotes the particle’s acceleration.
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Finally, the conservation of the total momentum of the composed (particle + field) system
is equivalent to the following Newton-like equation:

mak = |e|b
3
Ak (7)

whereAk is the dipole part ofA, i.e. DP(A) =: Akxk/r. However, it could not be interpreted
as the Newton equation because its rhs is nota priori given (it must be calculated from field
equations). To correctly interpret (7) we have to take into account (6). Now, calculatinga in
terms ofET

(1) and inserting into (7) we obtain the following relation betweenET
(1) andD(−2):

DP(4r4
e (E

T
(1))

r − λe(D(−2))
r ) = 0 (8)

where

re :=
√
|e|/4πb λe := e2/6πm. (9)

(F )r denotes the radial component of a three-vectorF . The formula (8) serves as a boundary
condition alongζ for the field dynamics along defined outsideζ . We call it thedynamical
conditionbecause it replaces particle’s equations of motion. Obviously, equation (7) may be
rewritten in a covariant form as a Lorentz-like equation:

maµ = e

r2
e

G̃
µν

(−2)uν (10)

whereX̃ = ∫
S(1) X dσ denotes a mean value ofX on a unit sphere in the hyperplane orthogonal

to uµ centred at the particle’s position.

3. Duality invariance

To show that the above theory can be generalized to also include Born–Infeld dyons let us
introduce a complex notation

X := D + iB Y := E + iH. (11)

The duality rotations

X → eiαX Y → eiαY (12)

leave Born–Infeld equations invariant. Let us consider a dyon carrying electric and magnetic
chargese andg, respectively. Define the complex charge:

Q := e + ig. (13)

Now, instead of (3) we obviously have

X(−2) = QA
4π

r

r
(14)

and instead of relations (4) we haveX ∼ r−2 andY ∼ r−1. To obtain the duality invariant
generalizations of (6) and (8) we proceed as follows: observe thatQ̄Y is duality invariant
(Q̄ stands for the complex conjugation ofQ). Therefore, its real and imaginary parts are also
invariant. Using this invariance let us make the duality rotationQ′ = eiαQ = e′ (i.e.g′ = 0)
and calculate

Re(Q̄Y ) = eE + gH = e′E′. (15)

But in the rotated frame (i.e.(e′, 0)) we may use results of the previous section: formula (5)
implies

Re(Q̄Y(0)) = b|Q|r
r

(16)
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and (6) leads to

Re(Q̄Y T
(1)) =

b

4
|Q|(3a− r−2(ar)r). (17)

Now, instead of (7) we have duality invariant

mak = |Q|b
3
Ak (18)

and finally the duality invariant dynamical condition reads

DP{Re [Q̄(4r4
0(Y

T
(1))

r − λ0(X(−2))
r )]} = 0 (19)

where

r4
0 := r4

e + r4
g =

e2 + g2

(4πb)2
= QQ̄

(4πb)2
(20)

λ0 := λe + λg = e2 + g2

6πm
= QQ̄

6πm
(21)

are generalizations of (9). The covariant Lorentz-like equation (10) has the following duality
invariant generalization:

maµ = 1

r2
0

(eG̃
µν

(−2) − g∗F̃
µν

(−2))uν. (22)

4. Canonical formulation

Now we show that the duality invariant dynamical condition (19) may be derived from the
mathematically well-defined variational principle. In the absence of a magnetic charge one
could guess that such a principle should be based on the following Lagrangian:

Ltotal = Lf ield +Lparticle +Lint (23)

with Lf ield given by (1),Lparticle = −m
√

1− v2 andLint = Aµj
µ. Varying Ltotal with

respect toAµ one obviously gets field equations (2). The variation with respect to a particle’s
trajectory leads to the standard Lorentz equationmaµ = eFµνuν. However, despite the fact
thatFµν is bounded, it is not regular at the particle’s position and, therefore, the rhs of this
equation is not well defined. This was already our motivation to find the mathematically
well-defined dynamical condition (8) which replaces ill-defined Lorentz equations of motion.
Observe that wheng 6= 0 the situation is even worse since now bothFµν andGµν behave as
r−2.

Let us consider a Born–Infeld dyon(m,Q = e + ig). The energy of the composed ‘dyon
+ field’ system in a fixed inertial laboratory frame is given by:

H =
√
m2 + p2 + V (q) (24)

wherep = mv/√1− v2 denotes a ‘kinetic’ momentum of a dyon and the function

V (q) :=
∫
{q}

d3x T 00 (25)

defines the energy of the field configuration(X, X̄) (T 00 denotes corresponding component
of an energy–momentum tensor of the Born–Infeld theory). The integral in (25) is defined
on a punctured three-dimensional (constant time) space where the position of a dyon{q} is
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excluded. Moreover, in the phase space of our system, parametrized by(q,p) and by(X, X̄),
define the following Poisson bracket [11]:

{F,G} := ∂F
∂q
· ∂G
∂p

+
1

i

∫
{q}

d3x

[
δF
δX
· ∇ × δG

δX̄
− (X 
 X̄)

]
− (F 
 G) (26)

for any two functionalsF andG. With this definition we have the following commutation
relations between dyon’s and field variables:

{qk, pl} = δkl (27)

{Xk(x),Xl(y)} = 2iεklm∂
mδ3(x− y) (28)

and remaining brackets vanish.
Let us treatH given by (24) as the ‘dyon + field’ HamiltonianH = H(q,p|X, X̄) and

look for the corresponding Hamilton equations. In the ‘field sector’ everything is clear: field
equations

iẊ = {X, H } = ∇ × Y (29)

supplemented by the Gauss law∇ ·X = 0 are equivalent to the Born–Infeld field equations
outside the dyon’s trajectory. Observe, thatY is conjugated toX via Y = δH/δX. Now, in
the ‘dyon sector’ one obviously has ˙q = {q, H } = v. The only nontrivial thing is to evaluate

ṗ = {p, H } = − ∂

∂q
V (q). (30)

Now, the Poincaŕe algebra structure implies that (30) is equivalent to

mak = |Q|b
3
Ak. (31)

Therefore, (31) is equivalent to the dynamical condition. This way we have proved that
the Hamiltonian (24) together with the Poisson bracket (26) define the consistent canonical
structure of a Born–Infeld dyon.

Let us observe that there is no ‘interaction term’ in (24). All information about the
interaction between dyon and the field is encoded in the boundary condition for the field
variables which has to be satisfied near dyon’s positionq, i.e. on the boundary of the punctured
(constant time) space. From the point of view of dyon’s dynamics the function (25) plays the
role of a potential energy stored in the ‘field sector’.

Performing the Legendre transformation in the ‘dyon sector’ one gets the corresponding
Lagrange function

L(q, v) = −m
√

1− v2 − V (q). (32)

It is clear that Euler–Lagrange equations implied byLare equivalent to the dynamical condition
for dyon’s dynamics. From the point of view of dyon’s dynamics the structure of (32) is evident:
‘kinetic energy−potential energy’. But in the ‘field sector’ (32) still generates the Hamiltonian
dynamics because the field generator is given by (25). Therefore, (32) is a nice example of a
mixed generator called a Routhian function in analytical mechanics.

5. Concluding remarks

Finally, let us make a few remarks:

(1) Let us observe that the force in a Newton-like equation (18) does not depend on a sign
of electric and magnetic charges (contrary to the standard Lorentz equation). It is a
characteristic feature of the self-interaction force already present in the Lorentz–Dirac
equation:maµ = eFµνext uν + λe(ȧµ − a2uµ). The external forceeFµνext uν does depend on
a sign ofe but a self-force proportional toλe does not (λe ∼ e2).
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(2) The mass of dyon solution in the non-Abelian Yang–Mills–Higgs theory in the BPS limit
is given by

MBPS = a|Q| (33)

wherea stands for the vacuum expectation value of the Higgs field (see [7,8,14]). Now,
observe that the lhs of Newton-like equation (7) contains purely mechanical quantities—
massm and accelerationak, whereas its rhs contains only electromagnetic quantities. The
quantityb|Q|/3 looks formally like a BPS mass witha = b/3. With this identification
(18) could be rewritten in a suggestive form:

mak = MBPSAk. (34)

Of course we do not claim that this identification has any fundamental meaning. However,
our observation is supported by the fact that in string theory theb-parameter of Born–Infeld
action arises as a function of a vacuum expectation value of a dilaton field.

(3) The remarkable feature of the Hamiltonian (24) and Lagrangian (32) is the absence of
an interaction term. After removing a dyon’s position the nontrivial topology of the
spaceR3− {q} requires very nontrivial boundary conditions for the field variables at the
boundary∂(R3 − {q}). Therefore, in a sense, the interaction is implied by a space-time
topology. Nevertheless, the above theory is not of the topological type, i.e. it is not true
that its action does not depend on a space-time metric.

(4) We have eliminated a gauge potential from the variational principle and there is no need
to introduce the Dirac string. Nevertheless, the standard quantization condition may be
easily derived (see e.g. [7]).

(5) These results may be generalized to a many-particle case.

We thank Professor S Deser for pointing out [13]. DC thanks Alexander von Humboldt-Stiftung
for financial support.
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